Mechanism of carbon nanostructure synthesis in arc plasma
نویسندگان
چکیده
Plasma enhanced techniques are widely used for synthesis of carbon nanostructures. The primary focus of this paper is to summarize recent experimental and theoretical advances in understanding of single-wall carbon nanotube SWNT synthesis mechanism in arcs, and to describe methods of controlling arc plasma parameters. Fundamental issues related to synthesis of SWNTs, which is a relationship between plasma parameters and SWNT characteristics are considered. It is shown that characteristics of synthesized SWNTs can be altered by varying plasma parameters. Effects of electrical and magnetic fields applied during SWNT synthesis in arc plasma are explored. Magnetic field has a profound effect on the diameter, chirality, and length of a SWNT synthesized in the arc plasma. An average length of SWNT increases by a factor of 2 in discharge with magnetic field and an amount of long nanotubes with the length above 5 m also increases in comparison with that observed in the discharge without a magnetic field. In addition, synthesis of a few-layer graphene in a magnetic field presence is discovered. A coupled model of plasma-electrode phenomena in atmospheric-pressure anodic arc in helium is described. Calculations indicate that substantial fraction of the current at the cathode is conducted by ions 0.7–0.9 of the total current . It is shown that nonmonotonic behavior of the arc current-voltage characteristic can be reproduced taking into account the experimentally observed dependence of the arc radius on arc current. © 2010 American Institute of Physics. doi:10.1063/1.3312879
منابع مشابه
Determining synthesis region of the single wall carbon nanotubes in arc plasma volume
Arc discharge is one of the most efficient and environmental friendly method to synthesize Single Wall Carbon Nanotube (SWCNT). However, due to the ultra-fast synthesis procedure, localization of the SWCNT synthesis in an arc discharge plasma volume in situ has been a long standing problem. This relates to the ability of controlling volumetric synthesis of nanostructures in plasmas in general. ...
متن کاملThe Synthesis of Carbon Nano Tubes by Arc Discharge Method in Liquid media
In this investigation a simplified arc discharge apparatus was used to synthesize mullti-wall carbon nanotubes. Because of not requiring vacuum equipment, heat exchange system, active or inert gases, this method is found to be cheaper and simpler than traditional arc discharge in gas environment. Using this method, CNTs are produced by performing an arc discharge between two graphite electrodes...
متن کاملInfluence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that ...
متن کاملControllable Synthesis of Flower-Like ZnO Nanostructure with Hydrothermal Method (RESEARCH NOTE)
Flower-like ZnO nanostructures were synthesized by decomposing Zn(OH)2 in 1,4- butanediol at 105 °C for 36 h. Size of flower-like ZnO nanostructure can be controlled by pH of the aqueous solution. In the preparation of flower-like ZnO nanostructure, zinc nitrate was used as a precursor. The morphology and microstructure of flower-like ZnO nanostructure have been characterized by scanning electr...
متن کاملOptimization of Experimental Conditions for Fabrication of Carbon Nanotubes Based onTaguchi obust Design Method
Carbon nanotube, a new structure of carbon element, is composed of graphene sheets rolled into closed concentric cylinders with diameter of the order of nanometers and length of micrometers. Liquid arc discharge was used for fabrication of carbon nanotubes, and subsequently a modified acid treatment method applied for purification stage. A statistical design of experimental (DOE) (Taguchi metho...
متن کامل